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ABSTRACT

The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface

inspection is described. Laboratory instruments and portable instruments can support remote sensing

probes that can map chemical contaminants on surfaces with detection limits under the best of conditions

in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer

range, and useful performance for films tens of microns thick. Examples of discovering and quantifying
contamination such as mineral oils and greases, vegetable oils, and sificone oils on aluminum foil,

galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel.
The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques

associated with quantitatively applying oils to metals, subsequently verifying the application, and

non-linear relationships between reflectance and the quantity oil are described.

INTRODUCTION

Reflectance Fourier transform infrared (FFIR) spectroscopes are powerful techniques for

materials characterization and surface analysis provided the spectrometer can address the appropriate

location on a specimen under conditions for which the resulting measurement is meaningful(l). The

spectra obtained over the energy range of 400 to 5000 cm j (wavelength range of 2 to 25 gin) contains

information that directly correlates qualitatively and quantitatively to chemical functional groups, and that

can be read like a book by most chemist. Reflectance techniques include external or specular, internal,
and diffuse reflection. In collaboration with Harrick Scientific, Inc., a system of remote sampling

terminals individually dedicated to each of these reflectance techniques, along with the means for

multiplexing these terminals, was developed for use with FTIR spectrometers to obtain spectra from the

surfaces of large flat or convex objects in ambient air or in environmental chambers with sufficient ease

that meaningful statistical comparisons of spectra obtained from many locations on an object or from

many objects can be made (2). Capabilities for gas analysis and emission analysis were also integrated

into the system. External reflectance is done at 75 ° with an externally operated KRS-5 wire-grid polarizer.
Internal reflectance uses a 45 ° single-reflection ZnSe element with p-polarized light, and diffuse reflection

uses a barrel ellipse. The system, attached to a BIO-RAD FTS-60 FTIR spectrometer, also includes the

capability to perform the above functions in controlled environments, i.e., cells and glove boxes, facilities
for mapping surfaces, i.e., obtaining spectra from measured coordinates on a specimen, a 1-m path

high-throughput gas-cell, and a spare port. The key design features of these sensors are maximum light

recovery from the specimen, maximum signal-to-noise (sensitivity) for a given spectrum, no limitation on

specimen size, high specimen throughput rate, and convenience. A portable surface inspection

*Managed by Martin Marietta Energy Systems, Inc., for the U. S. Department of Energy under contract
DE-AC05-84OR21400.
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instrument, consisting of a barrel ellipse diffuse reflectance sampling terminal attached to a MIDAC

Illuminator FTIR spectrometer configured for 12-Vdc operation and minimum size (200 mm by 200 mm

by 600 ram) and weight (13 kg) has also been developed. Internal reflectance spectroscopy is being
heavily exploited by the chemical industry for process monitoring of organic liquids, requires intimate

contact with the specimen, and has a strong potential for bulk and surface analysis of soft, organic
materials. External and diffuse reflectance are methods for analyzing the surfaces of solids and their

potential in process monitoring and inspection is just beginning to be recognized. This paper describes

the application of external and diffuse reflectance optics to practical inspection processes on metals of
practical importance. Qualitative and quantitative determination of surface contamination is

demonstrated and discussed. Criteria are presented that are consistent with current state-of-the-art FTIR

spectrometry for a practical, hand-held FTIR surface inspection machine and the technical support

necessary for its implementation.

EXTERNAL REFLECTANCE

External reflectance is simply the reflection of light by a mirror in which light passes through

films on the mirror surface. Grazing angle 75 ° reflectance from relatively flat metal objects is the most

sensitive method of surface analysis, with p-polarized light (light oscillating normal to the sample surface)
being absorbed by surface species and s-polarized light (light oscillating in the plane of the surface) not

being absorbed by surface species. Specular reflectance is normally considered to be a method for

analyzing mirror finishes, but in the mid-infrared region (_. = -10 I.tm), quite a number of very practical

surfaces pass for mirrors. High-quality, front-surface, gold mirrors are used as the reference spectra,

requiring a separate reference for each polarization. These mirrors are prepared by degreasing with a

household spray cleaners containing detergents and 2-butoxyethanol grease cutters followed by a

deionized water rinse, a 1-ks soak in concentrated sulfuric acid, another thorough deionized water rinse,

and a rapid drying in a nitrogen stream. Calibration is done using aluminum foil, which is weighed,

wiped uniformly with an oil, thoroughly wiped with dry tissue to remove all excess oil, and reweighed.

Such treatment leaves behind typically 150 mg m"2(- 150 nm film, 14 mg ft"2)of residue, which is easily

weighed on foil specimens of 0.1 m 2 area and yields spectra of good quality. Many spectra (typically 12)

can be obtained from one calibration specimen to give reasonable statistics to the calibration

measurement. Calibrations were performed using DC-200 (5 cps) silicone (dimethoxy silane), corn oil,
(polyunsaturated triglyceride) and a commercial light mineral oil (aliphatic hydrocarbon). Table 1 shows
the results of these calibrations.

Table 1. Calibration values for oil stains on aluminum foil.

Oil Band Calibration Factors Standard Deviation

DC-200 5 cps 2965 cm "_ 2.694 g m"2(a.u.) "_ 2960 nm (a.u.) "1 13%

DC-200 5 cps 1265 cm -_ 1.536 g m "2(a.u.) "j 1688 nm (a.u.) "1 17%

Mineral Oil 2925 cm "* 1.491 8 m'2 (a.u.) "t 1373 nm (a.u.) "_ 13%

Corn Oil 2925 cm "t 1.324 g m -2 (a.u.) -I 1218 nm (a.u.) "_ 19%

Corn Oil 1750 cm "_ 1.490 g m "2(a.u.) "1 1371 nm (a.u.) "_ 27%

The noise level of the system is typically 0.0002 a.u. near 2900 cm "_,so that the presence of
hydrocarbons at the nanometer film thickness level (1 mg ma) can be detected with certainty. Aluminum

foil, as taken from the roll, shows no detectable hydrocarbon bands at the 0.0002 a.u. level. At this noise

level, the sulfuric acid cleaning process appears to be equivalent to sputter cleaning of the gold mirrors

immediately before obtaining the reference spectra. Angle-resolved electron spectroscopy for chemical

analysis (ESCA) generally supports the observations that the l-nm hydrocarbon film, as determined by the
preceding calibration, left behind by the cleaning described above is equivalent to 1 nm of carbon residue
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supporting the general assumption that the calibration can be linearly extrapolated to lower
concentrations.

Galvanized sheet steel specimens (0.3 m by 0.3 m) were exposed to a variety of greases, paints,
and oils, was hammered, and then a 0.1 m region near the center of each specimen was cleaned using a

carbon dioxide pellet blaster. They were evaluated for residual contamination using 75* specular

reflectance mid-infrared spectroscopy. Figure 1 shows the p-, s-, and p- minus s-polarization spectra for

this galvanized sheet metal in new condition, degreased with a spray cleaner, and thoroughly rinsed
with water. The absorption bands for zinc oxide (1100 cm") and sorbed water (1600 cm "_and 3400 cm "_)

are obvious. A trace of water
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Figure 1. The polarization dependent, 75 ° specular reflectance

spectra for galvanized steel sheet referenced to a gold mirror.
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Figure 2. Typical p-polarized 75" specular reflectance spectra

for contamination on galvanized steel sheet referenced a cleaned

gold mirror. Bottom-to-top: cleaned, corn oil stain, silicone grease,

orange felt-tip pen mark.

vapor (near 1600 cm" and 3800
cm") can be seen in the p- and s-

polarization spectra. Since this

water vapor is in the spectrometer

and not on the specimen surface, it

occurs equally in both spectra and

disappears in the difference

speclra.

Figure 2 shows typical p-

polarization spectra of galvanized
sheet metal having ink, silicone,
and corn oil stains with the

as-cleaned metal. The carbon

dioxide pellet blasting cleaned

these specimens to an effective

hydrocarbon film of 3 to 5 mg m "2,

with the exception of two

specimens that had a
silicone-based, high-temperature
lubricant that indicated 8 and 18

mg m "2 as silicone. On the

peripheral region of these
specimens, where the carbon
dioxide blaster did not clean,

silicone levels as high 118 mg m a
were detected. The hammered

surfaces were not as reflective as

the original metal and resulted in a

decrease in the signal to noise that
translated into a lower level of

detection of 1 mg m "2.

Another study involved

the analysis of a 25-mm-diam by

1.45-m-long aluminum tube that

was suspected of being
contaminated with some unknown

film. The axis of the rod was

aligned with the direction of the
infrared beam, and the resulting

spectra identified the contaminant
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as a silicone oil. The rod was then repositioned such that many spectra were taken along the surface of

the rod to map the contamination along the rod. Figure 3 compares a spectrum from the rod to spectra of

Dow-Corning silicone vacuum grease (high-viscosity), DC-200 silicone temperature bath fluid

(low-viscosity), and fused silica (solid, spectra determined by internal reflectance). Figure 3 demonstrates
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_" 0.3 _

0.1 _ ,
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Wavenumbers

Figure 3. A comparison of external reflectance spectra from an

aluminum rod with silicone greases on gold mirrors.

Bottom-to-top: fused silica (by internal reflectance), DC-200 (5 cs),
vacuum grease, aluminum tube.

the simple relationship between

chemical functional groups and the
infrared absorption spectra. The

infrared specWa of the silicone oils

are very similar to fused silica

(O-Si-O polymer) with additional

bands corresponding to CH 3 (2965
cm "1) and to Si-C bonds (1265

erat). Subtle differences around the

800 cm" distinguish the _ease

from the light oil. Based on 19

measurements along the rod, the
absorbance from the 2965 cm"

band was 0.0182 a.u. (49 mg m "2,

0"=-0.0048 a.u.) and the 1265 cm"

band was 0.0499 a.u. (77 mg m 2,

o=-0.0184 a.u.) with no values

observed to be less than 29 mg m 2.

Ratios of the methyl band (2965
cm _) to the Si-C band (1265 cm _)
indicates that the silicone is not

DC-200 (5 cps) and this is

supported by the lack of structure
near 850 cm _. Thus, the conclusion that the silicone is similar to Dow Coming high vacuum grease.

Others studies have been carried out on aluminum and aluminum alloys with good results. For these
systems, the reflectance spectra indicate not only the presence of contaminants, but also bands from

surface oxides and other reflective losses, perhaps from surface texture, that seem to be strongly dependent
on the cleaning agent.

DIFFUSE REFLECTANCE

In the strictest sense, diffuse reflectance refers to light which is simultaneously absorbed and

scattered in a generally transparent medium. Paper is an example of a diffuse scatterer. The absorbance

relationship used for external reflectance of thin films discussed above is simply first-order absorption of

light in a film as a function of concentration and thickness of the film leading to a logarithmic
relationship between light lost and concentration/f'dm thickness. For a true diffuse reflector, differential

equations for first order light scattering and first order adsorption are solved simultaneously to yield the

Kubelka-Munk relationship. The optics required for diffuse reflectance is such that only light diffusely

scattered is directed to the detector and specularly reflected light is rejected from the detector, a process
that is optimized by the barrel ellipse. For the analysis of textured metal surfaces, for which sandblasted

metal surfaces and graphite cloth are two common examples, diffuse reflectance optics are used to collect

light that is specularly reflected in random directions. For the examples to follow, the light scattering
process will be specular reflectance from randomly oriented micromirrors for which diffuse reflectance

optics works very well. This approach has a significant loss of sensitivity relative to grazing angle

external reflectance because the effective light path, determined by the angle of incidence and of

reflection, through the film is shorter by a factor of 3 or 4, and because p- and s-polarizations cannot be

separated. The s-polarized light contributes to the total light intensity, but not to reflective losses,

lowering the sensitivity by a factor of 2. For cleanliness, more sensitivity is always desirable, however,
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the 10,000:1 or greater signal-to-noise is retained and losses in the high sensitivity, low detection limit are

converted to good performance for thick films. For example the resin (tens of microns thick) on the outer

surface of most graphite-resin composites (graphite cloth) is ideally suited for cure and heat damage

inspection using diffuse reflectance optics. The barrel ellipse remote sensor is an imminently practical

way to passively look down on a host of surfaces, without demanding too much knowledge of either the

surface or the light scattering processes, to reveal a rich world of chemistry. As with most aspects of
analytical chemistry, there remains the task of providing standards of known composition with which to
calibrate the method.

Marshal Space Flight Center provided several 6 by 6-in. plates of sandblasted 7075 aluminum

alloy and D6AC steel specimens that had been sprayed with grease contaminants (Conoco HD-2 grease,
Kaydol oil, and CRC silicone grease) dissolved in a volatile solvent. Aluminum foil masks were used to

form l-in. wide concentration steps on these plates and the masks were subsequently weighed to

determine the quantity of grease deposited. Contamination levels varied from a clean fwst step to levels

as high as -35 mg fta. These plates were analyzed using a barrel ellipse mapping station supported by a

BIO-RAD FTS-60 FI'IR spectrometer by obtaining spectra at 0.1-in. intervals along a line normal to the

steps near the center of the plate. Spectra were taken using sandblasted gold as a reference, and once

verified to be as clean as the gold the reference was changed to the clean step on the plate. Each spectrum

consisted of 256 coadded scans at 16 cm" resolution and 4 times zero-filling.

The results for the 7075 aluminum alloy in terms of the most sensitive peak heights for these
contaminates are shown in Figure 4. The HD-2 grease was present on the plate as steps, but the lighter

Kaydol oil at all but the lowest concentrations migrated to erase the steps. For Kaydol, the 5 to 6 in. step

was not the maximum contamination level because this oil migrated off the edge of the plate. The higher
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Figure 4. Absorbance measurements on 7075 aluminum aHoy based on the 2925 cm 1 band for HD-2

and Kaydol and 1265 cm "_for the silicone. Squares - Kaydol, Circles - HD-2, Up-triangles - silicone,

Down triangles - 3010 cm t baseline.

dose silicone levels appear to be in distinguishable. The D6AC steel plates responded similarly, but with

less sensitivity. Figure 5 gives the average step level and standard deviations for the data for both types of

plates using the log-linear format because the sensitivity appears to decrease superlinearly with decreasing

dose. Spectral manipulation techniques in FTIR spectroscopy are very powerful tools that allow one to

average all the spectra taken in a region to improve the signal-to-noise and thus the sensitivity for

detecting surface contamination. Figure 6 shows the average of spectrum for each step for the 7075

aluminum alloy plate and similar data for silicone on D6AC steel, the plate with the lowest detectability

limits on the basis of both dose and substrate. For the six plates, the only step on which the presence of

the contaminant could not be detected and distinguished from the other two contaminants was the lowest

step (1.5 mg ft 2 CRC silicone) on the D6AC steel plate. The spectra of HD-2 grease and the Kaydol are

very similar, i.e., both are aliphatic hydrocarbons with the dominant C-H stretching band at 2925 cm"
and bending modes near 1400 cm", with the exception that HD-2 grease contains a carbonate additive to
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Figure 5. Average absorbance measurements as a function of dose on 7075 aluminum alloy (left) and
D6AC steel (right) based on the 2925 cm "_band for HD-2 and Kaydol and 1265 cm "nband for the

silicone. Squares - Kaydol, Circles - HD-2, Up-triangles - silicone.
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Figure 6. Reflectance spectra from 7075 aluminum alloy and D6AC steel. Each spectrum is located at

its average step position and each spectrum is the average ten spectra taken on that step.

control pH that obscures the C-H bending modes and makes for a clear distinction between the two

contaminants. The silicone spectra were described in the previous section of this paper.

The behavior of various common contaminants on sandblasted aluminum plates (3-in.

by 3-in. by 0.04-in.) have been further explored using a mechanically rastered air brush to apply the

contaminant as a dilute solution in acetone through a mask that allows a 0.3-in. diam. spot to be

contaminated to relatively high levels of ~1 g fta. The dose was controlled by the composition and

quantity of the acetone solution being sprayed. Mapping techniques were then applied to measure a

contamination profile across the specimen. These profiles were repeated at time intervals to monitor the

spread of the oil across the plate. Once the spread of the oil had stabilized, the spot could be mapped in
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two dimensions. One major difficulty was moisture sorption on the plate that produced a weight gain

comparable to the applied oil. Another difficulty was that many oils spread very fast. The early time

profiles were measured using the Harrick/MIDAC Inspector located near the hood where the spraying was

carried out because of its superior data collection speed. Once the stain stabilized, the operation was

Wansferred to the barrel ellipse mapping station supported by a BIO-RAD FTS-60 FTIR spectrometer
because of better sensitivity near 3000 cm 1. Figure 7 shows the short term response of the 2925 cm 1

band for the mineral oil as it spread over the aluminum plate and diminished in intensity. Weight gain

measurements indicated that a maximum of 1.5 mg of oil had been deposited on the plate. As shown in

Figure 8, this spread continued at a diminishing rate for several weeks forming a stain with an abru _t
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Figure 7. The short term spread of light mineral

oil over sandblasted aluminum alloy based on

the reflectance response of the 2925 cm "1band.

Solid curves taken at 0.04-in. steps at 30-rain.

intervals starting 10-min. after spraying. Dotted

curve - 24 hr. after spraying. Dot - dash curve - 8

d. after spraying.
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Figure 8. The long term spread of light

mineral oil over sandblasted aluminum alloy

based on the reflectance response of the 2925

cm "1band. Circles - 8 d. after spraying, Squares -

15 d. after spraying, up-triangles - 6 wk. after

spraying, down triangle - 7 wk. after spraying

and spot extraction of the oil with freon.

edge. After 6 weeks, the stain was mapped in both dimensions of the surface and the resulting definition

of the slain is given in Figure 9. In a further effort to quantify the amount of stain on the aluminum plate,

an extraction method was devised to remove the oil from a well defined area of the plate. A mini-conflat

straight union, consisting of a 3-in. long by 0.75-in. diam. tube, was closed at one end with a blank flange

and copper gasket. The opposite end was clamped to the oil stained plate with a viton O-ring sealing the

assembly that was filled with freon. The system was shaken and the freon was recovered. The plate was

remapped yielding the lower curve in Figure 8 and the entire process was repeated. The freon from the
second extraction was analyzed by transmission infrared absorption spectroscopy against a calibration

curve developed from the original mineral oil and indicated that 50 I_g of oil had been extracted. This

corresponded to a net change of 0.00226 a.u. in2 or a calibration factor of 22 mg a.u." in a. The stain

described in Figure 9 has a total volume of 0.0245 a.u. in 2 that indicates a mineral oil content of 0.54 mg

spread over 0.02 ft.2 indicating a contamination level in the stained region of 26 mg ft a giving this

aluminum plate sample a calibration factor similar to that observed for the D6AC steel. This is

approximately one-third of the weight gain during the original spraying operation that may have

overestimated the oil quantity by as much as a factor of two due to moisture absorption. There is also the

possibility that some of the oil may have evaporated. Spray experiments with docosene-1

(CH,(CH2),CH3) indicates that this hydrocarbon does not spread from where it is deposited, octadeeene-1

(CH,(CH2)I6CI_) spreads in a manner similar to the light mineral oil used for this study, and

hexadecene-I (CI-Is(CH2),4CH3) evaporates. The large decrease in the reflectance values during the
spreading of the oil is generally consistent with the increase in area of the stain, i.e., and increase by

approximately a factor of 40.
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DISCUSSION

Reflectance mid-infrared Fourier U-ansformspectroscopy is a very powerful tool for determining
the surface cleanliness of metals, particularly when remote sensing hardware is used so that there is

minimum perturbation of the materials being analyzed and large numbers of analyses can be made. The
large sample capability is critical both for mapping capability and for the passive nature of the analysis.
Obtaining a cleanliness determination from metal parts is demanding, but not as demanding having the
parts unaffected by the experience. External reflection at grazing incidence with p-polarized light on
smooth metal surfaces yields the best detection limits. Diffuse reflectance optics offers an extremely
practical approach to a host of real surfaces that are neither smooth or well understood. Computerized
data processing of FTIR spectroscopic data has been around for a quarter century. Much progress has
been made in the last two years in developing software to match the great and growing potential of
microcomputers, particularly in the areas of speed and decreasing size and cost. A practical portable
FTIR surface analyzer has been fielded. Smaller, more rugged, and more sensitive instruments operating
at near real time speeds will soon be available. The potential for imparting intelligence to these
inspection machines is tremendous.

The surfaces to be analyzed, however, are infinitely variable and diverse with complex processes
related to the fundamental manner with which particular contaminants interact with particular surfaces in
relation to how light interacts with a particular surface and a particular contaminant. Apparent nonlinear
calibration curves, and migration and fractionation of the contaminant over time are possible explanations
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for some of the above observations. Experimental technique is very demanding for the preparation of
calibration standards, reference materials, and corroboration of calibration standards. But these

techniques are no more demanding than the handling of very clean materials before, during, and after the

analysis. Though these machines may be trained to recognize contaminants, mixtures of contaminants,

and give forth a quantitative number, at the 10 mg fta contamination level the distinction between the

spectra of an aliphatic hydrocarbon, a Iriglyceride, and a silicone is as plain as the nose on your face.
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